Back

European Digital Terrain Models (EU DTM)

DOI

DOI
Hengl, Tomislav; Leal Parente, Leandro; Krizan, Josip; Bonannella, Carmelo

Authors

September 28, 2020

Publication date

Digital Terrain Model for Continental Europe based on the three publicly available Digital Surface Models and predicted using an Ensemble Machine Learning (EML). EML was trainined using GEDI level 2B points (Level 2A; "elev_lowestmode") and ICESat-2 (ATL08; "h_te_mean"): about 9 million points were overlaid vs MERITDEM, AW3D30, GLO-30, EU DEM, GLAD canopy height, tree cover and surface water cover maps, then an ensemble prediction model (mlr package in R) was fitted using random forest, Cubist and GLM, and used to predict most probable terrain height (bare earth). Read more about this layer in this article.

 

European coverage, 30m resolution, Cloud Optimized Geotiff, https download

EPSG:3035

Hengl, Tomislav, Leal Parente, Leandro, Krizan, Josip, & Bonannella, Carmelo. (2020). Continental Europe Digital Terrain Model at 30 m resolution based on GEDI, ICESat-2, AW3D, GLO-30, EUDEM, MERIT DEM and background layers (v0.3) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4724549

				
					library(jsonlite)
library(RCurl)
library(terra)
## https://developers.zenodo.org/#authentication
TOKEN = scan("~/TOKEN_ACCESS", what="character")
dep.id = "4724549"
x = fromJSON(system(paste0('curl -H \"Accept: application/json\" -H \"Authorization: Bearer ', 
                             TOKEN, '\" \"https://www.zenodo.org/api/deposit/depositions/', dep.id, '\"'), intern=TRUE))
in.tif = paste0("/vsicurl/", x$links$latest_html, 
    "/files/dtm_elev.lowestmode_gedi.eml_md_30m_0..0cm_2000..2018_eumap_epsg3035_v0.3.tif")
r = terra::rast(in.tif)
r
# class       : SpatRaster 
# dimensions  : 152000, 188000, 1  (nrow, ncol, nlyr)
# resolution  : 30, 30  (x, y)
# extent      : 9e+05, 6540000, 900010, 5460010  (xmin, xmax, ymin, ymax)
# coord. ref. : +proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80 +units=m +no_defs 
# data source : dtm_elev.lowestmode_gedi.eml_md_30m_0..0cm_2000..2018_eumap_epsg3035_v0.3.tif 
# names       : dtm_elev.lowestmode_gedi.eml_md_30m_0..0cm_2000..2018_eumap_epsg3035_v0.3 

## total list:
knitr::kable(head(x$files[,c("filename", "filesize")], n=15))
#|filename                                                                        |    filesize|
#|:-------------------------------------------------------------------------------|-----------:|
#|001_preview_EU_DTM.png                                                          |     1449150|
#|dtm_canopy.height_glad.umd_m_30m_0..0cm_2019_eumap_epsg3035_v0.1.tif            |  3696999260|
#|dtm_elev.dsm_alos.aw3d_m_30m_0..0cm_2016..2018_eumap_epsg3035_v2012.tif         |  9911880300|
#|dtm_elev.lowestmode_gedi.eml_m_100m_0..0cm_2000..2018_eumap_epsg3035_v0.3.tif   |  1216810640|
#|dtm_elev.lowestmode_gedi.eml_md_30m_0..0cm_2000..2018_eumap_epsg3035_v0.3.tif   |  4999527675|
#|dtm_elev.lowestmode_gedi.eml_mf_30m_0..0cm_2000..2018_eumap_epsg3035_v0.3.tif   | 11583599452|
#|dtm_elev.lowestmode_meritdem_m_100m_0..0cm_2000..2018_eumap_epsg3035_v1.01.tif  |  1045455992|
#|dtm_hillshade.a315_gedi.eml_mf_30m_0..0cm_2000..2018_eumap_epsg3035_v0.3.tif    |  3072213368|
#|gedi_elev.lowestmode_2019_eumap.RDS                                             |   327810332|
#|hyd_surface.water_jrc.gswe_p_30m_0..0cm_1984..2019_eumap_epsg3035_v0.1.tif      |   998194349|
#|lcv_bare.earth_glcf.landsat_m_30m_0..0cm_2010_eumap_epsg3035_v0.1.tif           |  3495477581|
#|lcv_landcover.12_pflugmacher2019_c_1m_s0..0m_2014..2016_eumap_epsg3035_v0.1.tif |  1332398033|
#|lcv_tree.cover_umd.landsat_m_30m_0..0cm_2010_eumap_epsg3035_v1.7.tif            |  4323667068|

				
			
Spread the love